
IJSRST18401142 | Received : 05 Dec 2018 | Accepted : 14 Dec 2018 | November-December-2018 [4 (11) : 231-236]

© 2018 IJSRST | Volume 4 | Issue 11 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X
Themed Section: Science and Technology

DOI : https://doi.org/10.32628/IJSRST18401142

 231

Comparative Study of Different Project Size Estimation

Technique for the Development of Software
Ajay Kumar Shrivastava

M. Tech Research Scholar, Jharkhand Rai University, Ranchi, Jharkhand, India

ABSTRACT

In SDLC (Software development life cycle model) there are various phase we use to develop the software in that

the one is planning phase in this phase we use some estimation technique for estimate the Size, Cost, Effort etc

for the software. The main objective of software engineering discipline is to develop the software in systematic

and discipline manner as per user requirement. And also, the software should deliver in time and in budget. To

acquiring this feature is called planning of the software i.e. how much it takes time and cost to complete and

effort required form development is depend on nature of the software. The objective of this paper is to find out

advantages and shortcoming of different Size estimation technique. In this paper we compared all traditional

approach for size estimation technique.

Keywords : Software Engineering, Size Estimation Techniques, LOC, FP and Feature Point.

I. INTRODUCTION

Software project managers begin project planning

after passing feasibility study. Project planning is

undertaken and completed even before any

development activity starts. Project planning consists

of the following essential activities[1]:

These are some Attributes for the project Estimation

[2]:

Project size: Total size of the project.

Cost: How much cost required to develop the project.

Duration: Total time taken to complete the software.

Effort: Total effort required to complete the software.

The software planning activities is based on the

accurateness of these estimations.

✓ Scheduling.

✓ Staff organization and staffing planning.

✓ Risk identification and Risk analysis.

✓ Non functional requirement like quality

assurance plan, configuration management plan,

etc.

Project manager is responsible for all type of project

estimation. Fig.(1) represents order of project

planning activities. From fig.(1) we can easily

understand size of the software the first activity. The

most other planning activities can be carried out.

Other project estimations like effort, cost, resource,

and project duration are also very important

components of project planning[3].

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

 Ajay Kumar Shrivastava et al. Int. J. S. Res. Sci. Technol. November-December-2018; 4(11) : 231-236

232

 Figure 1

II. METRICS IDENTIFIED FOR EARLY SOFTWARE

PROJECT SIZE ESTIMATION

The subjective technique commonly implemented is

PERT for near accurate early estimation of the

problem. Size estimation can be categorized into

Optimistic, Most Likely and pessimistic approaches of

effort, time duration and cost of a software project.

The overall project size can be expressed as the

weighted mean of each functional size. The size of

software developed is not simply the number of bytes

that the source code occupies and nor it is the byte

size of the final code which is executed. The project

size is determined as a measure of the problem

complexity in terms of the effort and time required to

develop the final software product [4].

Previous research elucidates that two most popular

metrics to estimate size are: Lines of code (LOC) and

Function point (FP). The usage of each of these

metrics in project size estimation has its own

advantages and disadvantages[5].

A. Lines of Code (LOC)

Determining the LOC count at the end of a project is

an elementary job. However, accurate estimation of

the Lines of Count at the beginning of a project is

very difficult. In order to estimate the LOC count at

the beginning of a project, project managers usually

divide the problem into modules and each module

into sub modules and so on, until the sizes of the

different leaf-level modules can be approximately

predicted. To be able to do this, past experience in

developing similar products is helpful. By using the

estimation of the lowest level modules, project

managers arrive at the total size estimation [6,7].

TABLE I

Advantages of LoC Disadvantages of LoC as

size estimator

Most Simple metric to

employ

LoC is determined on

language and the

programmer

Adequate automation

tools for determining

LoC count

It penalizes the well

designed short programs

 The level of detail

required may not be

available at the early

stages of development.

 Not easily

comprehendible by users.

The commonly adopted Line Counting Rules :-

▪ Do not count blank lines.

▪ Do not count Comments.

▪ Job control lines should be count

▪ SQL statements should be count.

▪ Do not count Standard operating system

include files.

▪ Code lines should be count.

▪ User defined include files should be count

(once).

B. Function Points (FP)

Function point metric was proposed by Albrecht

[1983] and the major advantages of using the

function point metric is its capability to easily

estimate the size of a software product directly from

the problem specification. This has an edge over the

LOC metric, where the size can be accurately

determined only after full development of the

product [8,9].

 Effort

Estimat

ion

Cost

Estimati

on

Size

Estimat

ion Schedu

ling

Project

Staffing

Duratio

n

Estimat

ion

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

 Ajay Kumar Shrivastava et al. Int. J. S. Res. Sci. Technol. November-December-2018; 4(11) : 231-236

233

FP = Features * Co-efficients

 = 4.3 * (Number of inquiries) + 5.25 * (Number of

outputs) + 3.8 * (Number of inputs) + 10 *(Number

of files) + 8.5 *(Number of interfaces)

The feature description is as follows[10] :-

Number of inputs: Count of each data item input is

done by the user. These data inputs are different from

the user inquiries as the inquiries encountered are

user commands. These inquiries are counted

separately. The individual data items input by the

user are not considered in the calculation of the

number of inputs, but a group of related inputs are

considered as a single input.

Number of interfaces: Here the interfaces

considered are the interfaces used to exchange

information with other systems. Examples of such

interfaces are data files on tapes, disks,

communication links with other systems etc.

Number of outputs: The outputs considered refer

generically to the output screens, Printed reports,

error messages produced. While outputting the

number of outputs the individual data items within a

report are not considered, but a set of related data

items is counted as one input [6,7,8].

Number of inquiries: Number of inquiries is the

number of distinct interactive queries which can be

made by the users. These inquiries are the user

commands which require specific action by the

system.

Number of files: The count of each logical file is

computed. A logical file means groups of logically

related data. Thus, logical files can be data structures

or physical files.

The first step is computation of the unadjusted

function point (UFP). Next, each of these 14 factors is

assigned from 0 (least significant) to 6 (high

significance). The resulting numbers are summed,

yielding the Summed influence degree as (SID). Now,

TCF is computed as (0.65+0.01*SID).

As SID can vary from 0 to 70, TCF can vary from 0.65

to 1.35. Finally, FP=UFP*TCF [9].

TABLE 2

Function Type Low Average High

External Input x3 x4 x6

External Output x4 x5 x7

Logical Internal

File
x7 x10 x15

External Interface

File
x5 x7 x10

External Inquiry x3 x4 x6

Low, average and high decision can be determined

with this table :

TABLE 3

 1-5 Data

element

types

6-19 Data

elemet

types

20+ Data

elemet

types

0-1 File types

referenced
Low Low Average

2-3 File types

referenced
Low Average High

4+ File types

referenced
Average High High

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

 Ajay Kumar Shrivastava et al. Int. J. S. Res. Sci. Technol. November-December-2018; 4(11) : 231-236

234

In order to find adjusted FP, UFP is multiplied by

technical complexity factor (TCF) which can be

calculated by the formula[11] :

TCF = 0.65 + (sum of factors) / 100

There are 15 technical complexity factor. Each

complexity factor is rated on the basis of its degree of

influence, from less significant to high significant.

TABLE 4

S.No. Feature variable Priority (on

Scale 1-5)

1. Data communications *****

2. Performance *****

3. Configuration usage ****

4. Transaction rate ****

5. Online data entry ****

6. Efficiency of end user ****

7. Online update ***

8. End user efficiency ***

9. Complex processing ***

10. Reusability ***

11. Installation ease **

12. Operations ease **

13. Facilitate change *

14. Distributed functions *

15. Multiple sites *

Then FP = UFP x TCF [10]

Figure 2 : The Conceptual Model (Author

compilation)

TABLE 5

Advantages of Function

Points

Disadvantages of Function

Point Metric

Not restricted to Code Output quality ignored

Complexity identified

quantitatively

Effort prediction after

addition of TCF is

sometimes not improved

by the unadjusted

function count

Features and attributes

comprise the

information domain of

the problem

Oriented to traditional

data processing

applications

Independent of

Language,

Programming Language

Computational difficulty

in implementation

Easily upgraded to

OOPs concepts

Figure 3

TABLE 6

SUMMARY OF THE COMPARISON OF LOC AND

FUNCTION POINTS

Feature Lines Of

Code

Function

Points

Language &

technology

Dependent Independent

Communication

with clients

Not familiar

with LOC

Somewhat easy

to communicate

with the client

0
50

100
150
200
250
300
350

A
ss
e
m
b
ly
… c

Fo
rt

ra
n

C
O

B
O

L

P
as

ca
l

C
+

+

SQ
L

Sc
is

so
rs

Line of code

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

 Ajay Kumar Shrivastava et al. Int. J. S. Res. Sci. Technol. November-December-2018; 4(11) : 231-236

235

Tools There are

various

software tools

for counting

LOC

Not any

automated tool

for FP

Usage time Better result

in the design

stage

FP is applicable

in early stage of

requirements

gathering

III. FEATURE POINT METRIC

A major drawback of the function point metric is that

it does not focus on software algorithmic complexity.

That is, the function point metric completely assumes

that the develop any two functionalities of the system

and effort necessary to design is the same. But, we

know that this is usually not correct, the effort

necessary to develop any two functionalities may

vary extensively. To solve the measurement problems

of classical Management Information Systems

Function Points were originally invented. Software

like real time software, embedded software,

communication software and process control

software FP is not suitable. Whereas Feature point

metric includes an extra parameter algorithm

complexity. most of cases the estimation of the

Feature Points is like to the estimation of the

Function Points[13,14].

IV. CONCLUSION

In my future work can improve function point metric

or can propose a methodology to estimate the size of

the software from design phase of the project mainly

Use case model and class diagram. In SDLC model a

project manager can gather all refine requirement

from customer after several process that means there

is minor chance to mistake to gather requirement

form customer. After gathering requirement design

Use case model and class diagram it will be helpful to

estimate the actual size of the project by some

experience or expert team member.

V. REFERENCES

[1] Kathleen Peters, Berkun, Scott, “Art of Project

Management. Cambridge”, MA:O'Reilly Media.

ISBN 0-596-00786-8. Software Project

Estimation (White paper), Software

Productivity Centre Inc. (SPC) in Vancouver,

British Columbia, Canada, 2005.

[2] Nilesh Chandra Shukla, “ A Tool for Software

Project Management for Estimation, Planning

& Tracking and Calibration”.IIIT-Allahabad.

[3] Rajib mall, “Fundamentals of Software

Engineering” ,PHI learning pvt.Ltd.2009

edition.

[4] Nasib Singh Gill, “ Software Engineering,

Software Reliability, Testing and Quality

Assurance”, Khanna Book Pubishing Edition.

[5] D. R. Jeffery, G. C. Low, and M. Barnes, “A

comparison of function point counting

techniques”, IEEE Trans on Soft. Eng., vol. 19,

no. 5, 1993, pp. 529-532.

[6] D. St-Pierre, M Maya, A. Abran, J. Desharnais

and P. Bourque, “Full Function Points:

Counting Practice Manual”, Technical Report

1997-04, University of Quebec at

Montreal,1997.

[7] S.K.Mohanty & A.K.Bishnoi, “Software Effort

Estimation Approaches- A Review”,

International Journal of Internet Computing

ISSN No: 2231 – 6965, VOL-1, ISS- 3 2012.

[8] Hareton Leung, Zhang Fan, “Software Cost

Estimation”, Article 2001.

[9] Jyoti G Borade & Vikas R Khalkar, “Software

Project effort and cost Estimation Techniques”,

International Journal of Advanced Research in

Computer Science and Software Engineering

ISSN-2277-128X, Vol. 3, Issue 8, aug 2013.

[10] Matthias Kerstner, “Software Test Effort

estimation Methods”, 2 February 2011.

International Journal of Scientific Research in Science and Technology (www.ijsrst.com)

 Ajay Kumar Shrivastava et al. Int. J. S. Res. Sci. Technol. November-December-2018; 4(11) : 231-236

236

[11] Ali BouNassif, Luiz Fernando Capretz and

Danny Ho, “ Enhancing Use Case Point

Estimation Method Using Soft Computing

Techniques”, ISSN-2229-371X.

[12] Mike Cohn, “Estimating With Use Case Points”,

Founder-Mountain Goat Software.

[13] Erik Stensrud, “Estimating with Enhanced

Object Points vs. Function Points”. Andersen

Consulting Drammensveien 165, 0212 Oslo,

Norway& University of Oslo, Dept. of

Informatics

[14] Kurmanadham V.V.G.B. Gollapudi, “Function

Points or Lines of Code? – An Insight”, Wipro

Technologies.

